686 research outputs found

    Black Objects in the Gauge Theory of P-Branes

    Get PDF
    Within the context of the recently formulated classical gauge theory of relativistic p-branes minimally coupled to general relativity in D-dimensional spacetimes, we obtain solutions of the field equations which describe black objects. Explicit solutions are found for two cases: D > p+1 (true p-branes) and D = p+1 (p-bags).Comment: 9 pages, REVTEX 3.

    Automatic synthesis of reconfigurable instruction set accelerators

    Get PDF

    Lagrange Brackets and U(1) fields

    Full text link
    The idea of a companion Lagrangian associated with pp-Branes is extended to include the presence of U(1) fields. The Brane Lagrangians are constructed with FijF_{ij} represented in terms of Lagrange Brackets, which make manifest the reparametrisation invariance of the theory; these are replaced by Poisson Brackets in the companion Lagrangian, which is now covariant under field redefinition. The ensuing Lagrangians possess a similar formal structure to those in the absence of an anti-symmetric field tensor.Comment: 7 pages, LaTeX, reference correcte

    Gauge Theory of the String Geodesic Field

    Full text link
    A relativistic string is usually represented by the Nambu-Goto action in terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski space. Alternatively, a family of classical solutions of the string equation of motion can be globally described in terms of the associated geodesic field. In this paper we propose a new gauge theory for the geodesic field of closed and open strings. Our approach solves the technical and conceptual problems affecting previous attempts to describe strings in terms of local field variables. The connection between the geodesic field, the string current and the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian generalization and the generally covariant form of the model are also discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2

    Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices

    Full text link
    Tunable oscillatory modes of electric-field domains in doped semiconductor superlattices are reported. The experimental investigations demonstrate the realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes is determined using an analytical and a numerical modeling of the dynamics of domain formation. Three different oscillatory modes are found. Their presence depends on the actual shape of the drift velocity curve, the doping density, the boundary condition, and the length of the superlattice. For most bias regions, the self-sustained oscillations are due to the formation, motion, and recycling of the domain boundary inside the superlattice. For some biases, the strengths of the low and high field domain change periodically in time with the domain boundary being pinned within a few quantum wells. The dependency of the frequency on the coupling leads to the prediction of a new type of tunable GHz oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure

    Remarks on the Configuration Space Approach to Spin-Statistics

    Full text link
    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.Comment: 18 page

    Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices

    Full text link
    We examine how the current--voltage characteristics of a doped weakly coupled superlattice depends on temperature. The drift velocity of a discrete drift model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated as a function of temperature. Numerical simulations and theoretical arguments show that increasing temperature favors the appearance of current self-oscillations at the expense of static electric field domain formation. Our findings agree with available experimental evidence.Comment: 7 pages, 5 figure

    Quantum-mechanical model of the Kerr-Newman black hole

    Get PDF
    We consider a Hamiltonian quantum theory of stationary spacetimes containing a Kerr-Newman black hole. The physical phase space of such spacetimes is just six-dimensional, and it is spanned by the mass MM, the electric charge QQ and angular momentum JJ of the hole, together with the corresponding canonical momenta. In this six-dimensional phase space we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Kerr-Newman black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator and an eigenvalue equation for the Arnowitt-Deser-Misner (ADM) mass of the hole, from the point of view of a distant observer at rest, is obtained. In a certain very restricted sense, this eigenvalue equation may be viewed as a sort of "Schr\"odinger equation of black holes". Our "Schr\"odinger equation" implies that the ADM mass, electric charge and angular momentum spectra of black holes are discrete, and the mass spectrum is bounded from below. Moreover, the spectrum of the quantity M2Q2a2M^2-Q^2-a^2, where aa is the angular momentum per unit mass of the hole, is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of MM, QQ and aa are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 30 pages, 3 figures, RevTe

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure

    Microcanonical statistics of black holes and bootstrap condition

    Full text link
    The microcanonical statistics of the Schwarzschild black holes as well as the Reissner-Nordstro¨\sf \ddot{o}m black holes are analyzed. In both cases we set up the inequalities in the microcanonical density of states. These are then used to show that the most probable configuration in the gases of black holes is that one black hole acquires all of the mass and all of the charge at high energy limit. Thus the black holes obey the statistical bootstrap condition and, in contrast to the other investigation, we see that U(1) charge does not break the bootstrap property.Comment: 16 pages. late
    corecore